Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction.

نویسندگان

  • Bruno Clair
  • Tancrède Alméras
  • Gilles Pilate
  • Delphine Jullien
  • Junji Sugiyama
  • Christian Riekel
چکیده

Tension wood is widespread in the organs of woody plants. During its formation, it generates a large tensile mechanical stress, called maturation stress. Maturation stress performs essential biomechanical functions such as optimizing the mechanical resistance of the stem, performing adaptive movements, and ensuring long-term stability of growing plants. Although various hypotheses have recently been proposed, the mechanism generating maturation stress is not yet fully understood. In order to discriminate between these hypotheses, we investigated structural changes in cellulose microfibrils along sequences of xylem cell differentiation in tension and normal wood of poplar (Populus deltoides x Populus trichocarpa 'I45-51'). Synchrotron radiation microdiffraction was used to measure the evolution of the angle and lattice spacing of crystalline cellulose associated with the deposition of successive cell wall layers. Profiles of normal and tension wood were very similar in early development stages corresponding to the formation of the S1 and the outer part of the S2 layer. The microfibril angle in the S2 layer was found to be lower in its inner part than in its outer part, especially in tension wood. In tension wood only, this decrease occurred together with an increase in cellulose lattice spacing, and this happened before the G-layer was visible. The relative increase in lattice spacing was found close to the usual value of maturation strains, strongly suggesting that microfibrils of this layer are put into tension and contribute to the generation of maturation stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesoporosity changes from cambium to mature tension wood: a new step toward the understanding of maturation stress generation in trees.

In order to progress in the understanding of mechanical stress generation, the mesoporosity of the cell wall and its changes during maturation of poplar (Populus deltoides × P. nigra) tension wood (TW) and opposite wood (OW) were measured by nitrogen adsorption-desorption. Variations in the thickness of the gelatinous layer (G-layer) were also measured to clarify whether the mesoporosity change...

متن کامل

Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation.

A change in cellulose lattice spacing can be detected during the release of wood maturation stress by synchrotron x-ray diffraction experiment. The lattice strain was found to be the same order of magnitude as the macroscopic strain. The fiber repeat distance, 1.033 nm evaluated for tension wood after the release of maturation stress was equal to the conventional wood values, whereas the value ...

متن کامل

The gravitropic response of poplar trunks: key roles of prestressed wood regulation and the relative kinetics of cambial growth versus wood maturation.

In tree trunks, the motor of gravitropism involves radial growth and differentiation of reaction wood (Archer, 1986). The first aim of this study was to quantify the kinematics of gravitropic response in young poplar (Populus nigra x Populus deltoides, 'I4551') by measuring the kinematics of curvature fields along trunks. Three phases were identified, including latency, upward curving, and an a...

متن کامل

When a Tree Falls in the Woods: The Gravitropic Response in Poplar.

If a tree survives a fall in thewoods, themain stemgrowsupward from its newposition. In angiosperm trees, this growth reorientation is achieved via differential activity in the cambium, which produces tension wood on the side of the stem now facing upward and opposite wood on the bottom side (Ruelle, 2014). Whereas opposite wood is phenotypically similar to “normal” wood formedbyupright stems, ...

متن کامل

Solvent Polarity and Internal Stresses Control the Swelling Behaviour of Green Wood during Dehydration in Organic Solution

The dimensional variations of green wood samples induced by organic solvents have been studied. The solvents used (ethanol, isopropanol, acetone, and acetonitrile) covered a wide range of polarity and were studied pure and in aqueous solutions over a wide range of concentrations. Samples of normal and tension wood of poplar were used in order to minimize the effect of hydrophobic extractives on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 155 1  شماره 

صفحات  -

تاریخ انتشار 2010